Pre-prints
- S. C. Anand, N. Bastianello. “Security of Distributed Gradient Descent Against Byzantine Agents.”
- S. M. Azimi-Abarghouyi, N. Bastianello, K. H. Johansson, and V. Fodor, “Hierarchical Federated ADMM.” arXiv
- M. Barreau, N. Bastianello, “Learning and Verifying Maximal Taylor-Neural Lyapunov functions.” arXiv
- C. Liu, N. Bastianello, W. Huo, Y. Shi, and K. H. Johansson, “A survey on secure decentralized optimization and learning.” arXiv
- N. Bastianello, C. Liu, K. H. Johansson. “Enhancing Privacy in Federated Learning through Local Training.” arXiv
- G. Carnevale, N. Bastianello, G. Notarstefano, R. Carli. “ADMM-Tracking Gradient for Distributed Optimization over Asynchronous and Unreliable Networks.” arXiv
Chapter
- N. Bastianello, L. Schenato, R. Carli. “Multi-Agent Optimization and Learning: A Non-Expansive Operators Perspective.” Encyclopedia of Systems and Control Engineering [to appear] arXiv
Journal articles
- U. Casti, N. Bastianello, R. Carli, S. Zampieri. “A Control Theoretical Approach to Online Constrained Optimization.” Automatica [to appear] arXiv
- N. Bastianello*, D. Deplano*, M. Franceschelli, K. H. Johansson. “Robust Online Learning over Networks.” IEEE Trans. Automatic Control [to appear] [* equal contribution] doi, link, arXiv
- N. Bastianello, L. Madden, R. Carli, E. Dall’Anese. “A Stochastic Operator Framework for Optimization and Learning with Sub-Weibull Errors.” IEEE Trans. Automatic Control, vol. 69, no. 12, pp. 8722-8737, Dec. 2024 doi, link, arXiv
- N. Bastianello, R. Carli, S. Zampieri. “Internal Model-Based Online Optimization.” IEEE Trans. Automatic Control, vol. 69, no. 1, pp. 689-696, Jan. 2024 doi, link, arXiv
- N. Bastianello, R. Carli, A. Simonetto. “Extrapolation-based Prediction-Correction Methods for Time-varying Convex Optimization.” Signal Processing, vol. 210, pp. 109089, Sep. 2023 doi, link, arXiv
- N. Bastianello, L. Schenato, R. Carli. “A novel bound on the convergence rate of ADMM for distributed optimization.” Automatica, vol. 142, pp. 110403, Aug. 2022 doi, link
- A. M. Ospina, N. Bastianello, E. Dall’Anese. “Feedback-Based Optimization with Sub-Weibull Gradient Errors and Intermittent Updates.” IEEE Control Systems Letters, vol. 6, pp. 2521-2526, 2022 doi, link, arXiv
- N. Bastianello, R. Carli, L. Schenato, M. Todescato. “Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence.” IEEE Trans. Automatic Control, vol. 66, no. 6, pp. 2620-2635, Jun. 2021 doi, link, arXiv
- N. Bastianello, A. Simonetto, R. Carli. “Prediction-Correction Splittings for Time-Varying Optimization with Intermittent Observations.” IEEE Control Systems Letters, vol. 4, no. 2, pp. 373-378, Apr. 2020 doi, link
- A. Olama, N. Bastianello, P. Da Costa Mendes, E. Camponogara. “Relaxed Hybrid Consensus ADMM for Distributed Convex Optimization with Coupling Constraints.” IET Control Theory & Applications, vol. 13, no. 17, pp. 2828-2837, Nov. 2019 doi, link
Conference proceedings
- X. Ren, N. Bastianello, K. H. Johansson, T. Parisini. “Distributed Learning by Local Training ADMM.” 2024 IEEE Conference on Decision and Control (CDC’24)
- N. Bastianello, A. I. Rikos, K. H. Johansson. “Asynchronous Distributed Learning with Quantized Finite-Time Coordination.” 2024 IEEE Conference on Decision and Control (CDC’24) arXiv
- G. Carnevale, N. Bastianello, R. Carli, G. Notarstefano. “Distributed Newton Optimization with ADMM-Based Consensus.” Symposium on Systems Theory in Data and Optimization 2024
- A. Penacho Riveiros, Y. Xing, N. Bastianello, K. H. Johansson. “Real-Time Anomaly Detection and Categorization for Satellite Reaction Wheels.” 2024 European Control Conference (ECC’24), Jun. 2024, pp. 253-260 link
- Ö. T. Demir, L. Méndez-Monsanto, N. Bastianello, E. Fitzgerald, G. Callebaut. “Energy Reduction in Cell-Free Massive MIMO through Fine-Grained Resource Management.” 2024 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Jun. 2024, pp. 547-552 link
- N. Bastianello, A. I. Rikos, K. H. Johansson. “Online Distributed Learning with Quantized Finite-Time Coordination.” 2023 IEEE Conference on Decision and Control (CDC’23), Dec. 2023, pp. 5026-5032 doi, link, arXiv
- D. Deplano*, N. Bastianello*, M. Franceschelli, K. H. Johansson. “A unified approach to solve the dynamic consensus on the average, maximum, and median values with linear convergence.” 2023 IEEE Conference on Decision and Control (CDC’23), Dec. 2023, pp. 6442-6448 [* equal contribution] doi, link
- G. Carnevale, N. Bastianello, R. Carli, G. Notarstefano. “Distributed Consensus Optimization via ADMM-Tracking Gradient.” 2023 IEEE Conference on Decision and Control (CDC’23), Dec. 2023, pp. 290-295 doi, link
- N. Bastianello, R. Carli. “ADMM for Dynamic Average Consensus over Imperfect Networks.” IFAC Conference on Networked Systems (NecSys’22), Jul. 2022, IFAC-PapersOnLine vol. 55, no. 13, pp. 228-233 doi, link
- N. Bastianello, A. Simonetto, E. Dall’Anese. “OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression.” Proceedings of The 4th Annual Learning for Dynamics and Control Conference (L4DC’22), PMLR 168, pp. 138-152 link, arXiv, code
- N. Bastianello. “tvopt: A Python Framework for Time-Varying Optimization.” 2021 IEEE Conference on Decision and Control (CDC’21), Dec. 2021, pp. 227-232 doi, link, arXiv, code
- N. Bastianello, E. Dall’Anese. “Distributed and Inexact Proximal Gradient Method for Online Convex Optimization.” 2021 European Control Conference (ECC’21), Jun. 2021, pp. 2432-2437 doi, link, arXiv
- N. Bastianello, A. Simonetto, R. Carli. “Distributed Prediction-Correction ADMM for Time-Varying Convex Optimization.” 54th Asilomar Conference on Signals, Systems and Computers, Nov. 2020, pp. 47-52 doi, link, arXiv
- N. Bastianello, A. Simonetto, R. Carli. “Prediction-Correction Splittings for Nonsmooth Time-Varying Optimization.” 2019 European Control Conference (ECC’19), Jun. 2019, pp. 1963-1968 doi, link, arXiv
- N. Bastianello, A. Simonetto, R. Carli. “Prediction-Correction for Nonsmooth Time-Varying Optimization via Forward-Backward Envelopes.” 2019 International Conference on Acoustics, Speech, and Signal Processing (ICASSP’19), May 2019, pp. 5581-5585 doi, link, arXiv
- N. Bastianello, R. Carli, L. Schenato, M. Todescato. “A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks.” 2018 IEEE Conference on Decision and Control (CDC’18), Dec. 2018, pp. 3379-3384 doi, link, arXiv
- N. Bastianello, M. Todescato, R. Carli, L. Schenato. “Distributed Optimization over Lossy Networks via Relaxed Peaceman-Rachford Splitting: a Robust ADMM Approach.” 2018 European Control Conference (ECC’18), Jun. 2018, pp. 477-482 doi, link, arXiv
PhD Thesis
- N. Bastianello, Supervisors: R. Carli, A. Simonetto. “Operator theory for optimization and learning.” University of Padova, 2021 pdf
Patent
- A. Simonetto, N. Bastianello, R. Carli, T. T. Tchrakian. “Methods and Systems for Managing As-A-Service Systems in the Event of Connectivity Issues”, US-11886319-B2 link